

PC-Based Supercomputing for Uncertainty and Sensitivity Analysis of Models

Justin Babendreier, Rajbir Parmar, Kurt Wolfe

Office of Research and Development, National Exposure Research Laboratory, Ecosystems Research Division, Athens, Georgia

Key Words: Model, Uncertainty, Sensitivity, Parameter Estimation, Multimedia, Supercomputing

Quantitative Aspects of UA/SA/PE:

- Many techniques and methods available, improving constantly.
- Current knowledge and execution capabilities usually limited to a select few, out of reach from most model developers and model users.
- An "embarrassingly parallel" computational problem; solutions involve running a model over and over with slightly different inputs.
- Many EPA models written for Windows, but most supercomputing solutions today require "mainframes" or Linux-based PC clusters.

The UA/SA/PE Runtime Problem

- As model complexity, time & space grid density. or types of uncertainty and sensitivity analyzed increases, computational burden (runtime) typically increases geometrically.
- Greatest reason UA/SA/PE techniques not widely applied to EPA models is lack of Windows based computer processing capacity.
- General trend → typical to see PC-based model developers increase model complexity over time, offsetting concurrent gains in CPU speed.
- Depending on the EPA model/application, need 100's to 10's of millions of model simulations.

Runtime Problem Solution for PC-Models → **SuperMUSE** Supercomputer for Model Uncertainty and Sensitivity Evaluation

Clustering to Increase Computational Capacity

Data Server: Data Analysis

Speed of many

f no active MT, idles. This TC₁ call was assigned to MT₁.

Conceptual Layout of SuperMUSE

Why Facilitate Use of Model UA/SA/PE?

- Communicate prediction uncertainty to decision makers.
- Identify critical gaps in knowledge and data.
- Increasing technical focus for regulatory-driven litigation.
- We are called upon to establish validity, trustworthiness, and relevance in model predictions. (Chen and Beck, 1999)

Beneficial Impacts of PC-Based SuperMUSEing

- ✓ SuperMUSE is scalable to individual user (or program & regional office) needs; clustering from 2 to 1000⁺ PCs.
- ✓ Supports Windows or Linux based modeling systems.
- ✓ Can handle PC models with 10's to 1000's of variables.
- ✓ Solves "embarrassingly parallel" computing problems.
- \checkmark A local solution \Rightarrow empowers model developers and users.
- ✓ Autonomy from supercomputing centers, removes barriers.
- ✓ Simple, inexpensive, can be built/operated by PC novices.
- ✓ Ideal for debugging models and performing UA/SA/PE.
- ✓ Research effort at ERD delivers software tools that can tap the power of other internal/external PC hardware grids.

Collaborations

- Office of Solid Waste, Hazardous Waste Risk Assessments
- Drs. Beck and Osidele, UGA; global sensitivity analyses
- Dr. Hill, USGS; inverse problem software technologies
- Multi-agency workgroup DoE, DoD, NRC, USDA, NOAA